
F Fermi National Accelerator Laboratory

FERMILAB-Pub-95/130-E

D0

W and Z Boson Production in pp̄
Collisions at

p
s = 1.8 TeV

S. Abachi et al.

The D0 Collaboration

Fermi National Accelerator Laboratory
P.O. Box 500, Batavia, Illinois 60510

May 1995

Submitted to Physical Review Letters

Operated by Universities Research Association Inc. under Contract No. DE-AC02-76CHO3000 with the United States Department of Energy



Disclaimer

This report was prepared as an account of work sponsored by an agency of the United States

Government. Neither the United States Government nor any agency thereof, nor any of

their employees, makes any warranty, expressed or implied, or assumes any legal liability or

responsibility for the accuracy, completeness, or usefulness of any information, apparatus,

product, or process disclosed, or represents that its use would not infringe privately owned

rights. Reference herein to any speci�c commercial product, process, or service by trade

name, trademark, manufacturer, or otherwise, does not necessarily constitute or imply its

endorsement, recommendation, or favoring by the United States Government or any agency

thereof. The views and opinions of authors expressed herein do not necessarily state or reect

those of the United States Government or any agency thereof.



W and Z Boson Production in p�p Collisions at
p
s = 1.8 TeV

S. Abachi,12 B. Abbott,33 M. Abolins,23 B.S. Acharya,40 I. Adam,10 D.L. Adams,34

M. Adams,15 S. Ahn,12 H. Aihara,20 J. Alitti,36 G. �Alvarez,16 G.A. Alves,8 E. Amidi,27

N. Amos,22 E.W. Anderson,17 S.H. Aronson,3 R. Astur,38 R.E. Avery,29 A. Baden,21

V. Balamurali,30 J. Balderston,14 B. Baldin,12 J. Bantly,4 J.F. Bartlett,12 K. Bazizi,7

J. Bendich,20 S.B. Beri,31 I. Bertram,34 V.A. Bezzubov,32 P.C. Bhat,12 V. Bhatnagar,31

M. Bhattacharjee,11 A. Bischo�,7 N. Biswas,30 G. Blazey,12 S. Blessing,13 P. Bloom,5

A. Boehnlein,12 N.I. Bojko,32 F. Borcherding,12 J. Borders,35 C. Boswell,7 A. Brandt,12

R. Brock,23 A. Bross,12 D. Buchholz,29 V.S. Burtovoi,32 J.M. Butler,12 D. Casey,35

H. Castilla-Valdez,9 D. Chakraborty,38 S.-M. Chang,27 S.V. Chekulaev,32 L.-P. Chen,20

W. Chen,38 L. Chevalier,36 S. Chopra,31 B.C. Choudhary,7 J.H. Christenson,12 M. Chung,15

D. Claes,38 A.R. Clark,20 W.G. Cobau,21 J. Cochran,7 W.E. Cooper,12 C. Cretsinger,35

D. Cullen-Vidal,4 M.A.C. Cummings,14 D. Cutts,4 O.I. Dahl,20 K. De,41 M. Demarteau,12

R. Demina,27 K. Denisenko,12 N. Denisenko,12 D. Denisov,12 S.P. Denisov,32

W. Dharmaratna,13 H.T. Diehl,12 M. Diesburg,12 G. Di Loreto,23 R. Dixon,12 P. Draper,41

J. Drinkard,6 Y. Ducros,36 S.R. Dugad,40 S. Durston-Johnson,35 D. Edmunds,23 J. Ellison,7

V.D. Elvira,12;z R. Engelmann,38 S. Eno,21 G. Eppley,34 P. Ermolov,24 O.V. Eroshin,32

V.N. Evdokimov,32 S. Fahey,23 T. Fahland,4 M. Fatyga,3 M.K. Fatyga,35 J. Featherly,3

S. Feher,38 D. Fein,2 T. Ferbel,35 G. Finocchiaro,38 H.E. Fisk,12 Yu. Fisyak,24 E. Flattum,23

G.E. Forden,2 M. Fortner,28 K.C. Frame,23 P. Franzini,10 S. Fuess,12 A.N. Galjaev,32

E. Gallas,41 C.S. Gao,12;� S. Gao,12;� T.L. Geld,23 R.J. Genik II,23 K. Genser,12

C.E. Gerber,12;x B. Gibbard,3 V. Glebov,35 S. Glenn,5 B. Gobbi,29 M. Goforth,13

A. Goldschmidt,20 B. G�omez,1 P.I. Goncharov,32 H. Gordon,3 L.T. Goss,42 N. Graf,3

P.D. Grannis,38 D.R. Green,12 J. Green,28 H. Greenlee,12 G. Gri�n,6 N. Grossman,12

P. Grudberg,20 S. Gr�unendahl,35 W. Gu,12;� J.A. Guida,38 J.M. Guida,3 W. Guryn,3

S.N. Gurzhiev,32 Y.E. Gutnikov,32 N.J. Hadley,21 H. Haggerty,12 S. Hagopian,13

V. Hagopian,13 K.S. Hahn,35 R.E. Hall,6 S. Hansen,12 R. Hatcher,23 J.M. Hauptman,17

D. Hedin,28 A.P. Heinson,7 U. Heintz,12 R. Hern�andez-Montoya,9 T. Heuring,13

R. Hirosky,13 J.D. Hobbs,12 B. Hoeneisen,1;{ J.S. Hoftun,4 F. Hsieh,22 Ting Hu,38

Tong Hu,16 T. Huehn,7 S. Igarashi,12 A.S. Ito,12 E. James,2 J. Jaques,30 S.A. Jerger,23

J.Z.-Y. Jiang,38 T. Jo�e-Minor,29 H. Johari,27 K. Johns,2 M. Johnson,12 H. Johnstad,39

A. Jonckheere,12 M. Jones,14 H. J�ostlein,12 S.Y. Jun,29 C.K. Jung,38 S. Kahn,3 J.S. Kang,18

R. Kehoe,30 M.L. Kelly,30 A. Kernan,7 L. Kerth,20 C.L. Kim,18 S.K. Kim,37 A. Klatchko,13

B. Klima,12 B.I. Klochkov,32 C. Klopfenstein,38 V.I. Klyukhin,32 V.I. Kochetkov,32

J.M. Kohli,31 D. Koltick,33 A.V. Kostritskiy,32 J. Kotcher,3 J. Kourlas,26 A.V. Kozelov,32

E.A. Kozlovski,32 M.R. Krishnaswamy,40 S. Krzywdzinski,12 S. Kunori,21 S. Lami,38

G. Landsberg,12 R.E. Lanou,4 J-F. Lebrat,36 A. Leat,24 H. Li,38 J. Li,41 Y.K. Li,29

Q.Z. Li-Demarteau,12 J.G.R. Lima,8 D. Lincoln,22 S.L. Linn,13 J. Linnemann,23

R. Lipton,12 Y.C. Liu,29 F. Lobkowicz,35 S.C. Loken,20 S. L�ok�os,38 L. Lueking,12

A.L. Lyon,21 A.K.A. Maciel,8 R.J. Madaras,20 R. Madden,13 I.V. Mandrichenko,32

Ph. Mangeot,36 S. Mani,5 B. Mansouli�e,36 H.S. Mao,12;� S. Margulies,15 R. Markelo�,28

L. Markosky,2 T. Marshall,16 M.I. Martin,12 M. Marx,38 B. May,29 A.A. Mayorov,32

1



R. McCarthy,38 T. McKibben,15 J. McKinley,23 H.L. Melanson,12 J.R.T. de Mello Neto,8

K.W. Merritt,12 H. Miettinen,34 A. Milder,2 A. Mincer,26 J.M. de Miranda,8 C.S. Mishra,12

M. Mohammadi-Baarmand,38 N. Mokhov,12 N.K. Mondal,40 H.E. Montgomery,12

P. Mooney,1 M. Mudan,26 C. Murphy,16 C.T. Murphy,12 F. Nang,4 M. Narain,12

V.S. Narasimham,40 A. Narayanan,2 H.A. Neal,22 J.P. Negret,1 E. Neis,22 P. Nemethy,26

D. Ne�si�c,4 D. Norman,42 L. Oesch,22 V. Oguri,8 E. Oltman,20 N. Oshima,12 D. Owen,23

P. Padley,34 M. Pang,17 A. Para,12 C.H. Park,12 Y.M. Park,19 R. Partridge,4 N. Parua,40

M. Paterno,35 J. Perkins,41 A. Peryshkin,12 M. Peters,14 H. Piekarz,13 Y. Pischalnikov,33

A. Pluquet,36 V.M. Podstavkov,32 B.G. Pope,23 H.B. Prosper,13 S. Protopopescu,3

D. Pu�selji�c,20 J. Qian,22 P.Z. Quintas,12 R. Raja,12 S. Rajagopalan,38 O. Ramirez,15

M.V.S. Rao,40 P.A. Rapidis,12 L. Rasmussen,38 A.L. Read,12 S. Reucroft,27

M. Rijssenbeek,38 T. Rockwell,23 N.A. Roe,20 P. Rubinov,38 R. Ruchti,30 S. Rusin,24

J. Rutherfoord,2 A. Santoro,8 L. Sawyer,41 R.D. Schamberger,38 H. Schellman,29 J. Sculli,26

E. Shabalina,24 C. Sha�er,13 H.C. Shankar,40 R.K. Shivpuri,11 M. Shupe,2 J.B. Singh,31

V. Sirotenko,28 W. Smart,12 A. Smith,2 R.P. Smith,12 R. Snihur,29 G.R. Snow,25

S. Snyder,38 J. Solomon,15 P.M. Sood,31 M. Sosebee,41 M. Souza,8 A.L. Spadafora,20

R.W. Stephens,41 M.L. Stevenson,20 D. Stewart,22 D.A. Stoianova,32 D. Stoker,6

K. Streets,26 M. Strovink,20 A. Taketani,12 P. Tamburello,21 J. Tarazi,6 M. Tartaglia,12

T.L. Taylor,29 J. Teiger,36 J. Thompson,21 T.G. Trippe,20 P.M. Tuts,10 N. Varelas,23

E.W. Varnes,20 P.R.G. Virador,20 D. Vititoe,2 A.A. Volkov,32 A.P. Vorobiev,32

H.D. Wahl,13 J. Wang,12;� L.Z. Wang,12;� J. Warchol,30 M. Wayne,30 H. Weerts,23

W.A. Wenzel,20 A. White,41 J.T. White,42 J.A. Wightman,17 J. Wilcox,27 S. Willis,28

S.J. Wimpenny,7 J.V.D. Wirjawan,42 J. Womersley,12 E. Won,35 D.R. Wood,12 H. Xu,4

R. Yamada,12 P. Yamin,3 C. Yanagisawa,38 J. Yang,26 T. Yasuda,27 C. Yoshikawa,14

S. Youssef,13 J. Yu,35 Y. Yu,37 Y. Zhang,12;� Y.H. Zhou,12;� Q. Zhu,26 Y.S. Zhu,12;�

Z.H. Zhu,35 D. Zieminska,16 A. Zieminski,16 and A. Zylberstejn36

(D� Collaboration)

1Universidad de los Andes, Bogot�a, Colombia
2University of Arizona, Tucson, Arizona 85721

3Brookhaven National Laboratory, Upton, New York 11973
4Brown University, Providence, Rhode Island 02912
5University of California, Davis, California 95616
6University of California, Irvine, California 92717

7University of California, Riverside, California 92521
8LAFEX, Centro Brasileiro de Pesquisas F��sicas, Rio de Janeiro, Brazil

9CINVESTAV, Mexico City, Mexico
10Columbia University, New York, New York 10027

11Delhi University, Delhi, India 110007
12Fermi National Accelerator Laboratory, Batavia, Illinois 60510

13Florida State University, Tallahassee, Florida 32306
14University of Hawaii, Honolulu, Hawaii 96822

15University of Illinois at Chicago, Chicago, Illinois 60607
16Indiana University, Bloomington, Indiana 47405

17Iowa State University, Ames, Iowa 50011

2



18Korea University, Seoul, Korea
19Kyungsung University, Pusan, Korea

20Lawrence Berkeley Laboratory and University of California, Berkeley, California 94720
21University of Maryland, College Park, Maryland 20742
22University of Michigan, Ann Arbor, Michigan 48109

23Michigan State University, East Lansing, Michigan 48824
24Moscow State University, Moscow, Russia

25University of Nebraska, Lincoln, Nebraska 68588
26New York University, New York, New York 10003

27Northeastern University, Boston, Massachusetts 02115
28Northern Illinois University, DeKalb, Illinois 60115
29Northwestern University, Evanston, Illinois 60208

30University of Notre Dame, Notre Dame, Indiana 46556
31University of Panjab, Chandigarh 16-00-14, India

32Institute for High Energy Physics, 142-284 Protvino, Russia
33Purdue University, West Lafayette, Indiana 47907

34Rice University, Houston, Texas 77251
35University of Rochester, Rochester, New York 14627

36CEA, DAPNIA/Service de Physique des Particules, CE-SACLAY, France
37Seoul National University, Seoul, Korea

38State University of New York, Stony Brook, New York 11794
39SSC Laboratory, Dallas, Texas 75237

40Tata Institute of Fundamental Research, Colaba, Bombay 400005, India
41University of Texas, Arlington, Texas 76019

42Texas A&M University, College Station, Texas 77843

(July 26, 1995)

Abstract

The inclusive cross sections times leptonic branching ratios for W and Z

boson production in p�p collisions at
p
s = 1.8 TeV were measured using the

D� detector at the Fermilab Tevatron collider:

�W �B(W ! e�) = 2:36� 0:07� 0:13 nb

�W �B(W ! ��) = 2:09� 0:23� 0:11 nb

�Z �B(Z ! e+e�) = 0:218� 0:011� 0:012 nb

�Z �B(Z ! �+��) = 0:178� 0:030� 0:009 nb

The �rst error is the combined statistical and systematic uncertainty, and the

second reects the uncertainty in the luminosity. For the combined electron

and muon analyses we �nd �W �B(W ! l�)=�Z �B(Z ! l+l�) = 10:90�0:49.
Assuming Standard Model couplings, this result is used to determine the

width of the W boson, �(W ) = 2:044� 0:093 GeV.

PACS numbers: 13.38.-b, 13.85.Qk, 14.65.Ha, 14.70.Fm, 14.70.Hp

Typeset using REVTEX

3



The measurement of the production cross sections times leptonic branching ratios (� �B)
for W and Z bosons allows a determination of the width of the W boson and a comparison

of W and Z boson production with QCD predictions. The total width of the Z boson is

known to a precision of 0:3% [1], which places strong constraints on the existence of new

particles produced in neutral weak decays. Our knowledge of the total width of theW boson

is an order of magnitude less precise, and the corresponding limits on charged weak decays

are much less stringent. It is therefore important to improve the measurement of the W

boson width as a means of searching for unexpected W boson decay modes.

We determine the leptonic branching ratio of the W boson, B(W ! l�), from the ratio

of the measured W and Z boson � �B values

R � �W �B(W ! l�)

�Z �B(Z ! ll)
; (1)

where l = e or �, �W and �Z are the inclusive cross sections for W and Z boson production

in p�p collisions, and B(Z ! ll) is the leptonic branching ratio of the Z boson. We extract
B(W ! l�) from the above ratio using a theoretical calculation of �W=�Z and the precise
measurement of B(Z ! ll) from LEP. We then combine B(W ! l�) with a theoretical
calculation of the W boson leptonic partial width, �(W ! l�), to obtain the W boson total
width, �(W ). Previous measurements of �(W ) have been published by UA1 [2], UA2 [3]

and CDF [4,5].
In this letter, we report a new measurement of � � B and determination of �(W ) using

data collected with the D� detector [6] in 1992-93 at the Fermilab Tevatron p�p collider
at
p
s = 1.8 TeV. The four decay channels included in this analysis are W ! e�; �� and

Z ! e+e�; �+��.

Electrons were detected in hermetic, uranium liquid-argon calorimeters [7,8], with an

energy resolution of about 15%=
q
E(GeV). The calorimeters have a transverse granularity

of �� ��� = 0:1� 0:1, where � is the pseudorapidity and � is the azimuthal angle.
For the W ! e� and Z ! e+e� analyses we accepted electrons with j�j < 1:1 or 1:5 <

j�j < 2:5. The W and Z boson analyses both used the same trigger which required a
single electron with transverse energy (ET ) greater than 20 GeV. Kinematic selections were
made in the o�ine analysis requiring that Z boson candidates have two electrons, each with

ET > 25 GeV, and that W boson candidates have one electron with ET > 25 GeV and
missing transverse energy ( 6ET ) greater than 25 GeV.

The o�ine electron identi�cation requirements consisted of three criteria for a \loose"
electron: i) the electron had to deposit at least 95% of its energy in the 21 radiation length

electromagnetic calorimeter, ii) the transverse and longitudinal shower shapes had to be

consistent with those expected for an electron (based on test beam measurements), and iii)
the electron had to be isolated with I < 0.1. The isolation variable is de�ned as I=(Etot(0.4)-
EEM(0.2))/EEM(0.2), where Etot(0.4) is the total calorimeter energy inside a cone of radiusp
��2 +��2 = 0:4 and EEM(0.2) is the electromagnetic energy inside a cone of 0.2. For a

\tight" electron we also required a good match between a reconstructed track in the drift

chamber system and the shower position in the calorimeter. ForW boson events we required

one \tight" electron, while for Z boson events we required one electron to be \tight" and the

other to be either \tight" or \loose." Figures 1(a) and 1(c) show the observed transverse mass
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and invariant mass distributions for W ! e� and Z ! e+e� candidates passing these cuts.

For the Z ! e+e� analysis we used the events in the invariant mass range 75�105 GeV/c2.

The kinematic and geometric acceptance (shown in Table I) for the W ! e� and

Z ! e+e� channels was calculated with a Monte Carlo simulation using the measured de-

tector resolutions to smear generated four-momenta. The calculation used the CTEQ2M [9]

parton distribution functions (pdf), and a NLO calculation [10] of the W boson transverse

momentum. The systematic error in the acceptance includes contributions from the uncer-

tainty in the pdf (the spread among CTEQ2 [9], MRS [11], and GRV [12] pdf), from the

uncertainty in the W boson mass [13], and from systematic uncertainties associated with

modeling the detector response. The trigger and selection e�ciencies (Table I) were deter-

mined using Z ! e+e� events where one of the electrons satis�ed tight trigger and selection

criteria and the second electron provided an unbiased sample to measure the e�ciencies.

The trigger e�ciencies were found to be > 95%.

Muons were detected as tracks in three layers of proportional drift tube (PDT) chambers
outside the calorimeter. One layer of PDT chambers had four planes and was located
inside an iron toroid magnet. The other two layers, each with three planes, were located

outside of the iron. The muon momentum resolution in this analysis was �(1=p) = 0:18(p�
2)=p2 � 0:008 (with p in GeV/c). A muon track was required to match a charged track in
the central drift chamber system. We accepted muons that passed through the central iron
toroid (j�j < 1:0).

TheW ! �� and Z ! �+�� analyses both used the same trigger which required a single

muon with transverse momentum (pT ) greater than 15 GeV/c. Cosmic ray background was
reduced by rejecting muons that also had hits or tracks within 10 degrees in � and 20 degrees
in � in the muon chambers on the opposite side of the interaction point. Trigger e�ciencies
were measured using the subsample of events with high pT muons that satis�ed jet or 6ET

triggers, and also using the second muon in Z ! �+�� events. The trigger e�ciency was
about 40% (70%) forW (Z) boson events. Kinematic cuts were made requiring muon pT > 20

GeV/c and 6ET> 20 GeV for W boson events, and pT > 15; 20 GeV/c for the two muons in
Z boson events.

A \loose" muon was required to deposit su�cient energy in the calorimeter to be consis-

tent with the passage of a minimum ionizing particle and to traverse a minimum�eld integral
of 2.0 T�m. This latter requirement restricts the muon analysis to a region of the detector

with � 13 interaction lengths of material, so that hadronic punchthrough is negligible. A
\tight" muon had �ve additional requirements: i) a stringent track match with a track in

the central detector, ii) a good quality global �t with the vertex and a central detector track,
iii) a muon time of origin within 100 ns of the beam crossing, iv) energy in the calorimeter

consistent with single muon ionization within a cone of radius
p
��2 +��2 = 0:2 and with

less than 6 GeV of additional energy in a cone of 0.6, and v) a good muon impact parameter.
For Z boson events, we required at least one muon to be \tight" and the other to be

either \tight" or \loose." For W boson events, we required at least one \tight" muon (after

Z boson candidates were removed). Figures 1(b) and 1(d) show the observed transverse
mass and invariant mass distributions for W ! �� and Z ! �+�� candidates passing our

criteria. The kinematic and geometric acceptances (Table I) were calculated with a full
detector Monte Carlo simulation. The selection e�ciencies (Table I) were determined with

Z ! �+�� events using the same method that was used for electrons.
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The background estimates (Table I) due to Z ! e+e� or Z ! �+�� (where one of the

electrons or muons was lost) and W ! �� or Z ! �+�� (where � ! e�� or ���) were

obtained from Monte Carlo. The multijet background estimate for the W ! e� sample was

derived from the data by measuring the tail of the 6ET distribution for non-isolated electrons

and normalizing this at small 6ET to the 6ET spectrum for isolated electrons. The multijet

background in the W ! �� and Z ! �+�� samples was estimated using the distribution

of the isolation variable. The amount of multijet background in the Z ! e+e� sample was

estimated by performing a �t to the data using the predicted Z boson mass distribution

and the experimentally determined shape of the multijet background from dijet and direct

photon events. The cosmic ray and random hit backgrounds to W ! �� and Z ! �+��

were estimated from the distributions of muon time of origin relative to beam crossing.

The luminosity (Table I) was calculated by measuring the rate for p�p non-di�ractive

inelastic collisions using two hodoscopes of scintillation counters [6] mounted close to the

beam on the front surfaces of the end calorimeters. The normalization for the luminosity
measurement and the 5:4% systematic error in the luminosity, which has been estimated
from the uncertainty in the p�p inelastic cross section and uncertainties in the acceptance

and e�ciency of the counters, are described in Ref. [14].
We calculated � �B by subtracting the background from the number of observed events

(Nobs), and dividing the result by the acceptance, e�ciency, and luminosity. The results
obtained are shown in Table I, and are plotted in Fig. 2, together with the CDF results [15,16]
and the theoretical O(�2

s
) QCD prediction [17,18] of �W � B(W ! l�) = 2:42+0:13�0:11 nb and

�Z �B(Z ! ll) = 0:226+0:011�0:009 nb.
Using the de�nition for R in Eq. (1), we obtain for the electron, muon and combined

results:

Re = 10:82 � 0:41(stat)� 0:30(sys);

R� = 11:8+1:8�1:4(stat)� 1:1(sys); and

Re+� = 10:90 � 0:49(stat� sys):

Many common sources of error cancel in R, including the uncertainty in the luminosity and
parts of the errors in the acceptance and event selection e�ciency.

We use the combined ratio Re+� and Eq. (1) to determine B(W ! l�). We use
B(Z ! ll) = (3:367�0:006)% [1], and the theoretical calculation [17] of �W=�Z = 3:33�0:03,
where the quoted error is due to systematic di�erences in the pdf choices [9,11] (with

CTEQ2ML and CTEQ2MS giving the maximum variation) and the uncertainty in the W

boson mass [13]. We obtain

B(W ! l�) = (11:02 � 0:50)%:

We combine this measurement of B(W ! l�) with a theoretical calculation [20,13] of
�(W ! l�) = 225:2 � 1:5 MeV to obtain

�(W ) = 2:044 � 0:093 GeV:

The measurement of �(W ) (or B(W ! l�)) can be used to set limits on unexpected

decay modes of the W boson, such as W decays into supersymmetric charginos and neu-
tralinos [23], or into heavy quarks [24]. Comparing our result for �(W ) with the Standard
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Model prediction, �(W ) = 2:077 � 0:014 GeV [20,13], the 95% CL upper limit on the con-

tribution of unexpected decays to the W boson width is 164 MeV. Combining our result for

�(W ) with other measurements [25] gives a weighted average of �(W ) = 2:062�0:059 GeV.

Comparing this weighted average with the Standard Model value gives a 95% CL upper

limit of 109 MeV on unexpected decays.
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FIG. 1. Transverse mass and invariant mass distributions for the indicated channels. The

points are the data. The shaded areas represent the estimated backgrounds, and the solid lines

correspond to the sums of the expected signals (from Monte Carlo) and the estimated backgrounds.
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FIG. 2. � � B for inclusive W and Z boson production. The inner error bar is the combined

statistical and systematic uncertainty and the outer error bar includes the luminosity uncertainty.

The solid line and shaded band are the theoretical prediction described in the text.
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TABLES

TABLE I. Production cross section times leptonic branching ratio for W and Z bosons.

Channel W ! e� Z ! e
+
e
�

W ! �� Z ! �
+
�
�

Nobs 10338 775 1665 77
Backgrounds(%):
Z ! ee; ��; �� 0:6� 0:1 | 7:3� 0:5 0:7� 0:2
W ! �� 1:8� 0:1 | 5:9� 0:5 |
Multijet 3:3� 0:5 2:8� 1:4 5:1� 0:8 2:6� 0:8
Cosmic/Random | | 3:8� 1:6 5:1� 3:6
Drell-Yan | 1:2� 0:1 | 1:7� 0:3

Total Bkgnd(%) 5:7� 0:5 4:0� 1:4 22:1� 1:9 10:1� 3:7
Acceptance(%) 46:0� 0:6 36:3� 0:4 24:8� 0:7 6:5� 0:4
�trig � �sel(%) 70:4� 1:7 73:6� 2:4 21:9� 2:6 52:7� 4:9R
Ldt (pb�1) 12:8� 0:7 12:8� 0:7 11:4� 0:6 11:4� 0:6

� �B (nb) 2:36 0:218 2:09 0:178
�(stat); (sys); (lum) �0:02� 0:07� 0:13 �0:008� 0:008� 0:012 �0:06� 0:22� 0:11 �0:022� 0:021� 0:009
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